Tous les cours gratuit

Tutoriel mathématique

Parité d’une Fonction : Exercices Corrigés

La parité d’une fonction est un concept fondamental en mathématiques qui permet de caractériser le comportement de la fonction en rapport avec la symétrie de son graphe. Une fonction peut être soit paire, soit impaire, soit ni l’une ni l’autre. Dans cet article, nous allons explorer ces concepts à travers des exercices corrigés pour mieux comprendre leur application.

Définition
  • Fonction paire : Une fonction ( f ) est dite paire si pour tout ( x ) dans son domaine, ( f(-x) = f(x) ). Le graphe d’une fonction paire est symétrique par rapport à l’axe des ordonnées (axe vertical).
  • Fonction impaire : Une fonction ( f ) est dite impaire si pour tout ( x ) dans son domaine, ( f(-x) = -f(x) ). Le graphe d’une fonction impaire est symétrique par rapport à l’origine.
Exercices Corrigés
Exercice 1 : Identifier la Parité d’une Fonction

Énoncé : Déterminer si la fonction suivante est paire, impaire ou ni l’une ni l’autre.
[ f(x) = x^2 + 3 ]

Correction :

  1. Calculons ( f(-x) ) :
    [ f(-x) = (-x)^2 + 3 = x^2 + 3 ]
  2. Comparons ( f(-x) ) à ( f(x) ) :
    [ f(-x) = f(x) ]

La fonction ( f(x) = x^2 + 3 ) est donc paire.

Exercice 2 : Identifier la Parité d’une Fonction

Énoncé : Déterminer si la fonction suivante est paire, impaire ou ni l’une ni l’autre.
[ g(x) = x^3 – x ]

Correction :

  1. Calculons ( g(-x) ) :
    [ g(-x) = (-x)^3 – (-x) = -x^3 + x ]
  2. Comparons ( g(-x) ) à ( -g(x) ) :
    [ -g(x) = -(x^3 – x) = -x^3 + x ]
    [ g(-x) = -g(x) ]

La fonction ( g(x) = x^3 – x ) est donc impaire.

Exercice 3 : Analyser la Parité d’une Fonction Composée

Énoncé : Déterminer si la fonction suivante est paire, impaire ou ni l’une ni l’autre.
[ h(x) = x^2 + x ]

Correction :

Calculons:

h(−x)=(−x)2+(−x)=x2−x

La fonction ( h(x) = x^2 + x ) n’est ni paire ni impaire.

Parité d’une Fonction : Exercices Avancés Corrigés

Après avoir abordé les bases de la parité des fonctions, nous allons maintenant explorer des exercices plus avancés. Ces exercices nécessitent une compréhension approfondie des concepts de parité et peuvent impliquer des opérations sur des fonctions plus complexes.

Exercices Avancés
Exercice 1 : Composition et Parité

Énoncé : Soient les fonctions ( f(x) = x^3 ) et ( g(x) = \cos(x) ). Déterminer la parité de la fonction composée ( h(x) = f(g(x)) ).

Correction :

Exercice 2 : Parité et Dérivées

Énoncé : Soit la fonction ( f(x) = e^{-x^2} ). Déterminer si sa dérivée ( f'(x) ) est paire, impaire ou ni l’une ni l’autre.

Correction :

  1. Calculons la dérivée ( f'(x) ) :
    [ f(x) = e^{-x^2} ]
    [ f'(x) = \frac{d}{dx} (e^{-x^2}) = -2x e^{-x^2} ]
  2. Calculons ( f'(-x) ) :
    [ f'(-x) = -2(-x) e^{-(-x)^2} = 2x e^{-x^2} ]
  3. Comparons ( f'(-x) ) à ( f'(x) ) et ( -f'(x) ) :
    [ f'(-x) = -f'(x) ]

La dérivée ( f'(x) = -2x e^{-x^2} ) est donc impaire.

Exercice 3 : Parité d’une Fonction Définie par Morceaux

Énoncé : Soit la fonction définie par morceaux suivante :



Déterminer si cette fonction est paire, impaire ou ni l’une ni l’autre.

Correction :

  1. Calculons ( f(-x) ) pour ( x \geq 0 ) :
    [ f(-x) = f(x) = x^2 – 1 ]
  2. Calculons ( f(-x) ) pour ( x < 0 ) :
    [ f(-x) = f(-x) = 1 – (-x)^2 = 1 – x^2 ]
  3. Comparons les deux résultats :
    Pour ( x \geq 0 ) :
    [ f(-x) = x^2 – 1 ]
    [ f(x) = x^2 – 1 ]
    Pour ( x < 0 ) :
    [ f(-x) = 1 – x^2 ]
    [ f(x) = 1 – x^2 ]

Dans les deux cas, ( f(-x) = f(x) ).

La fonction définie par morceaux est donc paire.

Exercice 4 : Parité d’une Fonction Trigonométrique Composée

Énoncé : Soit la fonction ( f(x) = \sin(x^2) ). Déterminer si cette fonction est paire, impaire ou ni l’une ni l’autre.

Correction :

  1. Calculons ( f(-x) ) :
    [ f(-x) = \sin((-x)^2) = \sin(x^2) ]
  2. Comparons ( f(-x) ) à ( f(x) ) :
    [ f(-x) = f(x) ]

La fonction ( f(x) = \sin(x^2) ) est donc paire.

Conclusion

La parité des fonctions est un concept clé pour comprendre la symétrie des graphes des fonctions. En identifiant si une fonction est paire, impaire ou ni l’une ni l’autre, nous pouvons mieux appréhender leur comportement et leurs propriétés. Les exercices corrigés ci-dessus montrent comment aborder et résoudre des problèmes de parité de fonctions de manière méthodique.

Autres articles

La Parité d'une Fonction : Utilisation et...
En mathématiques, la parité d'une fonction est un concept qui...
Read more
Exercices Corrigés de Logique Combinatoire Séquentielle :...
La logique combinatoire séquentielle est une branche fondamentale de l'informatique...
Read more
Calcul du PGCD avec l'Algorithme d'Euclide
Dans ce tutoriel, nous allons utiliser l'Algorithme d'Euclide pour le...
Read more
AZ

Recent Posts

Carnet de Suivi des Apprentissages en Maternelle : Modèle Excel

Le carnet de suivi des apprentissages en maternelle est un outil essentiel pour observer, évaluer…

30 minutes ago

Carnet de Suivi des Apprentissages dans Excel : Modèle Automatisé

Un carnet de suivi des apprentissages est un outil pédagogique destiné à suivre les progrès,…

58 minutes ago

Étapes prioritaires pour appliquer les recommandations de l’ANESM

Pour réussir la mise en œuvre des recommandations de l’ANESM, il est crucial de prioriser…

1 heure ago

Synthèse des Recommandations de Bonnes Pratiques Professionnelles de l’ANESM : Outil Excel

L’Agence nationale de l’évaluation et de la qualité des établissements et services sociaux et médico-sociaux…

2 heures ago

10 Modèles de Lettres de Recommandation Professionnelle ➤ Guide Pratique

Une recommandation professionnelle est un levier puissant pour mettre en valeur les compétences, les réalisations…

2 heures ago

Les conditions pour le statut de Loueur Meublé Non Professionnel (LMNP)

Le statut de Loueur Meublé Non Professionnel (LMNP) permet aux particuliers d’investir dans l’immobilier locatif…

13 heures ago

This website uses cookies.